

Disentangling the Links Between Stress and Cardiovascular Disease

Ahmed Tawakol, MD Director, Nuclear Cardiology Co-Director, Cardiovascular Imaging Research Center Associate Professor of Medicine Massachusetts General Hospital Harvard Medical School

Corrigan Minehan Heart Center

Disclosures

- Related to the content of this presentation:
 - None
- Unrelated to the presentation
 - Lung Biotechnology: Research grant
 - Genentech: Consulting
 - Tourmaline Bio, Inc.: Consulting
 - Cunningham Bounds: Consulting

Psychosocial stress and Heart Disease

Psychosocial stress:

- Attributable CVD risk is on par with that for smoking, elevated lipids, hypertension, and diabetes.
- Yet relatively little had been known about the mechanisms that translate stress into CVD events.

Mechanisms Linking Stress to Heart Disease

- Stress may affect behaviors and factors that increase heart disease risk:
 - Smoking
 - Physical inactivity
 - Overeating
 - HTN
 - Diabetes
 - Adiposity
- These factors do not explain the observed risk

The INTERHEART Study **Chronic Stress vs. Myocardial Infarction Risk**

(odds ratio)

The INTERHEART Study

Comparing CRFs

Adding Stress to CRFs

Yusuf et al Lancet 2004

Steptoe et al Nat Rev Cardiol 2012

Chronic Stress Promotes Atherosclerotic Inflammation in Mice

Dutta et al Nature 2012, Heidt et al Nat Med 2014, Nahrendorf & Swirski, Circ Research 2015

Leukopoietic Tissue Activity in Humans

Emami, et al JACC Imaging 2015

...Associates with Circulating Markers of Inflammation

	Correlation Coefficient	p Value
Serum biomark	ers	
CRP	0.62	0.002
TNF	0.19	0.46
IL-1β	0.43	0.09
Gene expressio	n in leukocytes	
CD36	0.05	0.85
MSR-1	0.53	0.02
S100A9	0.15	0.54
TLR-2	0.19	0.45

Arterial FDG Uptake Provides a Measure of Arterial Inflammation

Figueroa et al Circ CV Imaging 2011

Tawakol et al JACC 2006

FDG PET Measures of Arterial Plaque Inflammation

Consistent Associations Between FDG Signal and Histologically-proven Arterial Inflammation in Humans

Study	(N)	Histological Measure	Imaging Paramet er	r	p-value
Tawakol et al. 2006	17	Absolute CD68 staining % CD68 staining	SUV	0.49	<0.0001
			TBR	0.68	<0.0001
			SUV	0.58	<0.0001
			TBR	0.7	<0.0001
Graebe et al. 2009	9	mRNA expression of CD68	TBR	0.71	0.02
Font et al. 2009	15	% CD68 staining	TBR	0.8	<0.005
Menezes et al. 2011	21	% CD68 staining	TBR	0.55	0.011
Saito et al. 2013	25	CD68 staining	SUV	NA	0.006
Taqueti et al. 2014	25	% CD68 staining	TBR	0.64	<0.001
Skagen et al.	36	% inflammatory	SUV	0.52	0.003
2015 30	- 50	cell staining	TBR	NA	0.002
Cocker et al. 2018	49	% CD68 staining Number of CD45+ pixels	SUV	0.45	0.001
			TBR	0.51	<0.0001
			SUV	0.88	<0.001
			TBR	0.63	0.009
Johnsrud et	20	% area of	SUV	0.54	0.008
al. 2019	30	inflammatory cells	TBR	0.58	0.002

Osborne et al JNC 2020

Arterial Inflammation Predicts CVD Events

Clinical Imaging of Inflammation using FDG

Guidelinesrecommended for evaluation of...

Perceived Stress Scale-10

The questions in this scale ask you about your feelings and thoughts during the last month. In each case, you will be asked to indicate by circling how often you felt or thought a certain way.	Never	Almost Never	Sometimes	Fairly Often	Very Often
1. In the past month, how often have you been upset because of something that happened unexpectedly?	0	1	2	3	4
2. In the past month, how often have you felt unable to control the important things in your life?	0	1	2	3	4
3. In the past month, how often have you felt nervous or stressed?	0	1	2	3	4
4. In the past month, how often have you felt confident about your ability to handle personal problems?	0	1	2	3	4
5. In the past month, how often have you felt that things were going your way?	0	1	2	3	4
6. In the past month, how often have you found that you could not cope with all the things you had to do?	0	1	2	3	4
7. In the past month, how often have you been able to control irritations in your life?	0	1	2	3	4
8. In the past month, how often have you felt that you were on top of things?	0	1	2	3	4
9. In the past month, how often have you been angry because of things that happened that were outside of your control?	0	1	2	3	4
10. In the past month, how often have you felt that difficulties were piling up so high that you could not overcome them?	0	1	2	3	4

The Brain's Stress-Related Neural Network : Controlling the Physiologic Response to Stressors

Blair et al. NEJM Dec 2014

Stress-Associated Neural Network: the switch from non-stress to stress conditions

Anesten Nature Reviews Neuroscience 2009

Impact of Stress on Corticolimbic Structures

Roozendaal et al Nature Reviews Neuroscience 2009

fMRI Imaging of Amygdalar Activity

Individuals with greater amygdalar activation, by fMRI:

Gianaros et al J. Neurosci. 2008

Muscateli et al Brain Behav Immun 2014 Gianaros et al Biol Psych 2009

PET Imaging: Resting amygdalar activity correlates w Stress/Anxiety

Individuals with stress have metabolically active amigdalae

Imaging the Neurobiology of Stress

<u>Neural Metabolism</u> High amygdalar activity (AmygA_c) relative to counterregulatory cortical activity

Functional MRI

Neural Activation and Connectivity

- Heightened activation in response to stressful stimuli
- Reduced connectivity with counterregulatory tissue

Tissue Volumes

- Amygdalar volume loss
- Due to loss of counterregulatory connections

Diffusion Tensor Imaging

Axonal Integrity

Integrative **Bio-**Imaging with **PET/CT** and **PET/MR**

Osborne et al Circ Imaging 2020

Integrative Bio-Imaging to Study How Chronic Stress Leads to CVD in Humans

- Sought to test the hypothesis that higher stress neural activity associates with greater risk of CVD
- Employed multi-system integrative bio-imaging w FDG PET/CT and PET/MR to quantify:
 - Amygdalar/Cortical Activity (AmygA_C)
 - as ratio of amygdalar activity : counter-regulatory cortical activity
 - Leukopoietic Activity
 - bone marrow activity
 - Arterial inflammation
 - Aortic activity
- 5-year follow-up for CVD events (med record rev)

AmygA_c Robustly Predicts CVD

AmygAc vs. CVD				
	(primary measure)			
	HR (95% CI)	p value		
Univariate				
Per unit change	14.1 (4.0-50.0)	<0.0001		
Per SD change	1.59 (1.27–1.98)	<0.0001		
Covariates: age and	sex			
Per unit change	5·0 (1·3–19·1)	0.0193		
Per SD change	1.32 (1.05-1.68)	0.0193		
Covariate: Framing	ham risk score			
Per unit change	4.5 (1.3-15.7)	0.0192		
Per SD change	1.30 (1.04–1.62)	0.0192		
Covariates: combin	ed cardiac risk factors*			
Per unit change	7.6 (2.0-28.4)	0-0027		
Per SD change	1.42 (1.13–1.79)	0-0027		
Covariate: pre-existing atherosclerotic disease (CAC score)				
Per unit change	10.7 (2.7-42.9)	0-0008		
Per SD change	1.51 (1.19–1.93)	0-0008		
Covariate: history o	f depression or anxiety			
Per unit change	18.1 (5.0-65.5)	<0.0001		
Per SD change	1.66 (1.32-2.08)	<0.0001		
Covariate: antidepr	essant use			
Per unit change	17-3 (4-8-62-2)	<0.0001		
Per SD change	1.65 (1.32-2.06)	<0.0001		

AmygAc vs. More Stringently Defined Events			
	HR (95% CI)	p value	
Cardiovascular d	lsease		
Per unit change	14.1 (4.0-50.0)	<0.0001	
Per SD change	1.59 (1.27-1.98)	<0.0001	
MACE			
Per unit change	15-9 (4-4-58-1)	<0.0001	
Per SD change	1.62 (1.29-2.03)	<0.0001	
AMACE			
Per unit change	23.7 (1.6-350.0)	0.0212	
Per SD change	1.74 (1.09–2.78)	0.0212	

AmygA_C Vs Event Timing

Tawakol et al Lancet 2017

Amygdalar Activity vs. Activity in other Tissues

AmygA_c vs Activity in Other Tissues

Comparator Tissue	Correlation with AmygA _c	P value	
Atherosclerotic inflammation	0.44	<0.001	
Bone marrow activity	0.42	<0.001	
Control tissue (Subcutaneous Fat)	0.02	0.79	

Tawakol et al Lancet 2017

Path Analysis

Proposed Mechanism

Tawakol et al Lancet 2017

Supports Path Predicted in Mice

Multi-group support for *neural-immunearterial* mechanisms of disease

(out of >200 studies mentioning Amygdala and Cardiovascular Disease since January 2017)

Stress-Cancer Link

240 patients with head and neck cancer who underwent 18F-FDG-PET/CT imaging as part of **initial cancer staging**.

SNA : Strong and Independent Predictor of All-Cause Mortality

Mikail et al EHJ 2024

Amygdalar-cortical <u>interactions</u> predict atherosclerosis

Hypothesis:

If stress is <u>causally</u> related to CVD...

...then a genetic predisposition to stress syndromes should independently associate with cardiovascular disease events.

Genetic Predisposition to Stress Disorders vs Brain Activity and Structure

S Abohashem, M Osborne, et al AHA 2020

Genetic Predisposition to Stress Disorders vs CV Events

Mediation (Path) Analysis

Mental Stress can Induce Clinically Important Ischemia

Stress and Depression Accelerate Gain of CVD Risk Factors

G Civieri et al ACC Adv 2024

Stress/Depression-Thrombosis Link

Anxiety or Depression vs DVT Risk

Model Covariables		Anxiety Disorders		Depression		
		Hazard Ratio (95% CI)	p-value	Hazard Ratio (95% CI)	p-value	
		1.803 (1.612-2.016)	5.6 x 10 ⁻²⁵	1.651 (1.474-1.849)	4.0 x 10 ⁻¹⁸	
+ Demographic factors	+Age, Sex, Race	1.970 (1.759-2.207)	8.4 x 10 ⁻³²	1.756 (1.566-1.968)	4.6 x 10 ⁻²²	
+ CVD risk factors	+Hypertension, Diabetes, Hyperlipidemia, Smoking	1.658 (1.469-1.871)	2.6 x 10 ⁻¹⁶	1.504 (1.331-1.700)	6.0 x 10 ⁻¹¹	
+ DVT risk factors	+Cancer history, Long term aspirin use, Oral contraceptive use	1.530 (1.354-1.728)	8.5 x 10 ⁻¹²	1.427 (1.261-1.614)	1.6 x 10 ⁻⁸	

Rosovsky et al AJH 2024

Anxiety or Depression vs Thrombosis

Stress Neural Activity vs. Thrombosis

Stress-Related Pathophysiology

What about Chronic Stressors and CVD?

- Two well-studied stressors:
 - Low socioeconomic status (e.g. low income and high crime)
 - Chronic noise
- Well-known that both factors associate with :
 - CVD
 - Stress
- Hypothesis:
 - stress-associated pathways partially mediate the link between Noise/SES and CVD

Income vs Health

Chetty et al JAMA 2014

Income vs Health

Change in Income vs Cardiovascular Disease

Socioeconomic Status vs CVD: Involvement of Stress-Associated Mechanisms

2) \downarrow SES \rightarrow \uparrow AmygA \rightarrow \uparrow art inflam \rightarrow \uparrow MACE: = -0.0137 (-0.0546, -0.0001), p < 0.05

Quartiles Income

Noise and CVD

CENTRAL ILLUSTRATION Proposed Pathophysiological Mechanisms of Noise-Induced Cardiometabolic Disease Decibel scale (dBA) **Transportation Noise** 130 threshold of pain aircraft on take off 120 110 rock band **Cognitive and Emotional Responses** jackhammer 100 Cortisone Angli Adrenaline Noradrenaline Stress Response 90 truck HPA Axis Activation tononic Imbalanaci ystemic Inflammatic **Thrombotic Pathways** telephone ringing 80 FOXO NF_KB TGFB ATM Fas + passenger car 70 Unhealthy conversation 60 WHO Europe IT-1 for noise Adhesion Immune Cell Activation 50 Vascular Dysfunction rain Molecui and Infiltration -(55)Healthy Endothelium Activated Endothelium quiet living room 40 0. 30 whisper Superoxide + Nitric Oxide Proliferation
Inflammation Inflammatory Cytokine Peroxynitrite 20 ticking of a watch Endothelial Dysfunction **Manifest Diseases** rustling leaves 10 Ohe \leftrightarrow Heart Failure threshold of hearing 0 **Cardiometabolic Disease**

Münzel, T. et al. J Am Coll Cardiol. 2018;71(6):688-97.

Noise and CVD

CENTRAL ILLUSTRATION Proposed Pathophysiological Mechanisms of Noise-Induced Cardiometabolic Disease Decibel scale (dBA) **Transportation Noise** threshold of pain 130 Disturbance of Activities, Sleep, Communication aircraft on take off 120 Annovance rock band 110 **Cognitive and Emotional Responses** jackhammer 100 Noradrenaline Cortisone Angli Dopamine Adrenaline How does noise exposure initiate these pathobiological processes in humans? Unhealthy conversation 60 WHO Europe IT-1 for noise nune Cell Activation Vascular Dysfunction 50 rain and Infiltration Healthy Endothelium Activated Endothelium quiet living room 40 30 Vasodilation whisper Superoxide + Nitric Oxide Vasoconstrictio Inflammatory Cytokine 20 ticking of a watch Endothelial Dysfunctio Manifest Diseases rustling leaves 10 threshold of hearing 0 **Cardiometabolic Disease**

Noise-Brain-CVD

Is it the stressor... or the stress response that causes disease?

Circ Imaging 2020

Neurobiological Resilience

Dar el al Circ Imaging 2020

Neurobiological Resilience

Dar el al Circ Imaging 2020

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Could **neurobiological resilience** influence risk for having CVD events that are triggered by <u>acute</u> stress?

Corrigan Minehan Heart Center

Classic Stress-Associated CVD Syndrome: Takotsubo Syndrome (TTS)

- Acute, usually reversible heart failure syndrome
- Often triggered by acute emotional or physical stressor.
- Pathogenesis remains incompletely delineated.
- Link between the brain and heart has long been proposed as a factor.

Classic Stress-Associated CVD Syndrome: Takotsubo Syndrome (TTS)

- fMRI study
- 15 patients w TTS vs. 39 controls
- TTS assoc w impaired cortico-limbic connectivity
 - notably involving the amygdala and prefrontal cortex

"unknown whether [fMRI] changes observed in TTS patients were present before the onset of the disease"

Templin et al EHJ 2019

AmygA_C vs. Risk of Takotsubo Syndrome (TTS)

- 104 Individuals who underwent FDG-clinical PET/CT
- 41 subsequently developed TTS (med 2.5 years after imaging)
- 63 matched controls.

A Radfar, et al European Heart Journal 2021

AmygA_c vs. Risk of Takotsubo Syndrome (TTS)

- 104 Individuals who underwent FDG-clinical PET/CT
- 41 <u>subsequently</u> developed TTS (med 2.5 years after imaging)
- 63 matched controls.

A Radfar, et al European Heart Journal 2021

Acute Stress and CVD

Surges in Cardiovascular Events during Stressful Periods

Wilbert-Lampen et al NEJM 2008

Lower susceptibility of neural centers to activation by stressful events

Higher AmygA_c Less **Neurbiologically** Resilient

Higher susceptibility of neural centers to activation by stressful events

Less neural activation and lesser systemic response to stress

Fewer Physiologic consequences of stress

> **Benign / Resilient** Course

Triggered neural activation and exaggerated systemic response to stress

Sympathetic system surge Inflammation Hypercoagulability

ACS Sudden Arrhythmia Death

Takotsubo

HARVARD MEDICAL SCHOOL TEACHING HOSPITAL

Modifying Stress Neural Activity and Neurobiological Resiliance

Corrigan Minehan Heart Center

61

Stress reduction intervention alters amygdalar grey mater density

Holzel et al SCAN 2010

Stress Reduction may Impart CVD Benefits

Blumenthal et al Circulation 2016

Stress Reduction may Impart CVD Benefits

226 Subjects with recent CVD events Standard Cardiac Rehab (exercise) vs Enhanced Cardiac Rehab (Exercise + SR)

Stress Neural Network Changes Associated with Tai Chi and Qigong

Respiration vs. Amygdalar Oscillations

Evaluation of Lifestyle Factors : MGB Biobank Heart-Mind Study

Light/Mod Alcohol vs MACE

	Covariable Themes	Covariables	10-year MACE	P-Value
s ption	+ CVD risk factors (primary analysis)	Age, sex, HTN, DM, HLD, smoking	0.81 (0.75-0.88)	P<0.001
ate v Isumj	+ Health behaviors	Exercise, Sleep disorders	0.83 (0.77-0.90)	P<0.001
t/moder ohol cor	+ Socioeconomic factors	Employment, Education, income	0.84 (0.77-0.91)	P<0.001
Ligh w Alc	+ Psychological factors	Depression, Anxiety	0.84 (0.77-0.91)	P<0.001
Lo	+ Medical comorbidities	Charlson index	0.87 (0.80-0.94)	P<0.001

			MACE Component	*HR (95% CI); <i>P</i> Value
All MACE Coronary MACE ACS MACE HF PVD Stroke			All MACE Coronary MACE (MI + UA + Revasc) ACS MACE (MI + UA) HF (Heart Failure) PVD (Severe PVD + PVD Revasc) Stroke (Ischemic + Hemo + TIA)	0.78 (0.71-0.86); <i>P</i> < 0.001 0.78 (0.67-0.91); <i>P</i> = 0.001 0.78 (0.67-0.92); <i>P</i> = 0.002 0.79 (0.70-0.88); <i>P</i> < 0.001 0.72 (0.55-0.93); <i>P</i> = 0.013 0.74 (0.66-0.84); <i>P</i> < 0.001
All Cancers			[†] All Cancers	1.23 (1.14-1.33); <i>P</i> < 0.001
0.	5 0.75 HB (Log Scal	1 1.25	1.5	

Light/Mod Alcohol vs. Stress-Associated Neural Activity

Mezue et al JACC 2023

Light/Mod Alcohol vs MACE

Greater effect in individuals with anxiety

B Population (n)	Alcohol Intake	10-	Year MACE HR*			<i>P</i> Value for Difference	<i>P</i> Value for Interaction
		0.5	0.75	1	HR (95% CI)		
Individuals Without	none/minimal			ļ.	0.78	< 0.001	
Pre-Existing Anxiety (29,651)	light/moderate				(0.73-0.83)	< 0.001	0.003+
Individuals With Pre-Existing Anxiety† (4,067)	none/minimal			ļ.	0.60	< 0.001	0.005+
	light/moderate	_	I		(0.50-0.72)	× 0.001	

~double the reduction in MACE risk

Mezue et al JACC 2023

- Mod alcohol associates with decreased CVD risk
 - in part by attenuating stress-related pathways

No safe levels of alcohol

 Need therapies that reduce stress-associated neural mechanisms <u>without</u> the side effects of alcohol.

Physical Activity and Stress: It's not all about endorphins

Mandatory Treadmill Running (TR) Enhances Dendritic Arborization

Sedentary

Relationship between Exercise and Stress-Associated Neural Activity

If exercise reduces MACE in part by attenuating stress-associated mechanisms...

...then exercise should have a larger impact on MACE risk among individuals with chronically heightened AmygA_c (e.g. those w depression)

Physical Activity vs Cardiac Events: Greater Impact in those w Depression

	Pre-existing Depression (n)	Physical Activity	Coronary	MACE HR†	Incidence (percentage)	HR [95% CI]	p for difference	p for interaction¶
More than		(MET-min/wk)	0.5 0.75	1 1.25				
louble the CVD risk reduction	Absent* (n=45,065)	<	-12%		605 (4·9%)	1	0.015	- 0.046
among		≥	-		994 (3·2%)	0.880 [0·794, 0·975]		
those with depression	Present (n=5,042)	<	-33%		129 (7·0%)	1	0.003	
		2		-	106 (3·9%)	0.673 [0.519, 0.873]		
	1.2	p <(0.001			p <0.001		
year MACE HR	1.1 1 0.9 0.8 0.7	Trend Across	s PA Quintiles	p interaction =0.01 (Depression*PA) Across Quintiles PA		nd Across PA Qui		

Recommendations

Small Prospective Study Evaluating Exercise

Pahk et al Frontiers in Endocrinology 2023

Sleep, Stress Sensitivity, and CVD Risk

Interaction between Genetics of Stress, Sleep and MACE Risk

nPRS	Sleep	MACE				Percentage of Additional	Interaction
Subgroup	Deprivation	OR (95% CI)				MACE risk	p-value*
nPRS <	Yes	1.632 (1.390, 1.917)		⊢_ ∎1	<0.001		
Median	No	1.00 (reference 1)	'	↑63%	NA		
						103%	0.010
nPRS≥	Yes	2.283 (1.929, 2.703)		—	<0.001		
Median	No	1.00 (reference 2)	•	<u></u> 128%	NA		
				Odds Ratio			

Abohashem et al, AHA 2023

- Stress and Stress-related Disorders:
 - Common, important risk factors for CVD
 - Attributable risk on par with HTN, smoking, DM
- Associate with:
 - higher stress-associated neural activity
 - leukopoietic activity & systemic inflammation
 - arterial inflammation and noncalcified plaque
 - thrombosis
 - CVD events
- Their CVD impacts might be modifiable
- Large trials are needed in order to:
 - Prove causation and
 - Determine efficacy of interventions

For individuals with higher atherosclerotic risks and higher stress, would recommend :

- Stress reduction approaches
- Exercise
- Healthy sleep

Acknowledgements

Lab Team:

- S Abohashem •
- M Aldosoky
- G Civieri
- G Goudot
- E Hanlon
- K Karam
- M Khalil
- C Lau
- M Osborne
- I Qamar
- A Radfar
- R Rosovsky
- A Seligowski

MGB Collaborators: •

- C Catana
 - K Choi
 - JW Denninger,
 - G Fricchione
 - SK Grinspoon
 - J Huffman
 - F Jaffer
 - J Lo
 - M Lu
 - M Nahrendorf
 - T Neilan
 - R Pitman
- H Sabet

- L Shin,
- D Solomon
- J Smoller
- D Sosnovik
- J Wasfy
 - <u>Outside</u>
 - Collaborators: •
- J Bathon
- R Beanlands
- J Bucerius
- ZA Fayad
- F Giammarile
- J Giles
- M Hacker

- P Hsue
- D Paez
- S Rajagopalan
- S Turgeon

Funding:

- NHLBI
- NIAID
- NIAMS
- IAEA

- Osher/Harvard
 - Lung Biotechnology

79